Is quantum advantage moving too fast for you to keep up?

– An overview of the recent developments in quantum computing –

Vienna, 12th of October, 2019:
Eliud Kipchoge became the first human to run a sub 2-hour marathon. Once believed to be unattainable, his time, 1:59:40, will not be officially recognized as a world record [1]. The reason for this is that the experiment to run 26.2 miles in under two hours was conducted under specific conditions which are not comparable to standard racing situations. Having an electric car and a team of 41 world-class runners in front of him, setting the pace, he broke “the last barrier of modern athletics”. Or to put it in his own words: “Vienna is about running and breaking history, like the first man on the moon.”

Although the final proof in terms of a sub-2 hours world record is still missing, he demonstrated that it is actually achievable, thereby inspiring a whole generation of upcoming athletes, thanks to a storm of #nohumanislimited hashtags and the vast amounts of money invested by the organizers and sponsors of this “historical” event.

Now you might wonder why is this quantum physics nerd telling you all this in a science page? Maybe -just maybe- because she simply enjoys running. But, no. There is indeed something similar happening in the latest progress of quantum computing!

Quantum computers work fundamentally different than any other so-called “classical” computer, may it be an ordinary laptop or a supercomputer. Many hopes have been placed in quantum computers; an unbreakable encryption, the discovery of new materials and drugs, solutions to our energy and climate problems, an economic boost. However, they are still at the development stage. One major step towards fulfilling these expectations is to prove their advantages over any other computer. And here lies the conjunction between Eliud Kipchoge‘s run of the century and the recent progress in quantum computing.

This article is an attempt to approach the topical question: Did a quantum computer outperform any computer on this planet and therefore broke the barrier of classical computing?

Google’s headquarters in Mountain View, California, 23rd of October, 2019:
In their nature paper “Quantum supremacy using a programmable superconducting processor” [2], Google claims that they have achieved the first experimental evidence of a computational task that can only be performed on quantum processors. They report that their quantum processor, called Sycamore, needs about 200 seconds to solve this specific task, whereby today’s best supercomputers would take approximately 10,000 years. That is 26 million times faster than any state-of-the-art supercomputer, or in other words, practically impossible.

IBM Q’s headquarters in New York, two days earlier, 21st of October, 2019:
Since a first draft of the paper was leaked on the website of NASA in September (yep, nerdyness does not make immune against leaking), the scientific community outside Google was already prepared and have started to carefully examine the findings. As a result, IBM, the strongest actual competitor in building quantum computers, argues in a non peer-reviewed preprint [3] that the classical algorithm can significantly improve. IBM claims that “an ideal simulation of the same task can be performed on a classical system in 2.5 days”. This is “only” a thousand times faster.

The speed up of 26 million and a thousand times faster seems far apart from each other, however, there is only a thin line between performing a task much faster than on a supercomputer, and performing a task so much faster that it is beyond reach for any classical machine. From a broader point of view, speed is only one alerting parameter. It is also about the task. So, let us get our hands dirty and enter the depths of quantum computing.

Photograph of the Sycamore processor (Erik Lucero, Google AI, [5] ).

The algorithm runs on a quantum processor named “Sycamore” which consists of 53 qubits*, each forming a loop of on qubit coupled to the four nearest neighbors.

A Qubit is fundamentally different from a classical bit, which is either a 1 or a 0 and forms the basic unit of information processing in ordinary computers. Qubits, however, exploit the wave characteristics of quantum particles in order to create a new type of informational unit which is neither a 1 nor a 0 but best described by multiple states at once, i.e. a superposition of 1s and 0s. The unique computing potential of a quantum computer is not only based on these single quantum states, but rather on the wave-like interactions between them. In theory, this enables a network of qubits to perform computations exponentially faster than conventional computers of the same size in terms of informational units.

The problem, Sycamore was asked to solve, was carefully chosen, keeping in mind that it needs to be a tough issue for classical computers. Having said this, we try to formulate the task in just one sentence: “Sycamore, toss 53 loaded coins and tell us how likely the obtained 53-digit string of heads and tails is!” Doesn’t sound like a really hard problem at all? Oh, yes, there are 2⁵³ (1 quadrillion) combinations!

Nonetheless, Sycamore is capable of solving this by applying a circuit of random operations on the qubit network. The result leaves the 53 qubits in a random state. Once measured, the state collapses into a sequence of 0s and 1s or heads and tails, if you wish. Some outcomes, however, are more likely than others due to the quantum features of the pre-processed qubit state. In their paper Google describes this as follows: “Owing to quantum interference, the probability distribution of the bitstrings resembles a speckled intensity pattern produced by light interference in laser scatter, such that some bitstrings are much more likely to occur than others.” The speckled intensity pattern is just another metaphor as throwing a loaded coin. It essentially means that the quantum circuit outputs a random string of 0s and 1s with some results having a higher probability. Throwing the coin often enough can reveal its bias. Sycamore does so by running the circuit one million times and subsequently measuring the observed output strings. It takes the quantum processor approximately 3 minutes and 20 seconds to obtain the final probability distribution of the outcomes.

Emulating this computation on a state-of-the-art supercomputer is much more difficult. By extrapolating the results from simpler versions of the quantum random-number generator, the Google team estimates that today’s best classical computer would take 10,000 years to solve the problem. But strong criticism has being made by IBM: “We urge the community to treat claims that, for the first time, a quantum computer did something that a classical computer cannot with a large dose of skepticism due to the complicated nature of benchmarking an appropriate metric.” In their eyes, an improved simulation, based on performance-enhance data storage and an optimized usage of the classical hardware, can be performed on a classical system within 2.5 days. Another doubtful point, addressed by IBM, is the usefulness of the task since any application is still missing. However, back in the mid-seventies, almost no-one could have imagined all the applications of the newly emerging personal computer.

IBMQLAB_computecenter (3)
The IBM Quantum Computation center (IBM News Room [6]).

Assessing the findings of Google and IBM finally boils down to the question: What does it mean that a quantum computer is “supreme” over classical computers? ⁺

In search of an answer, quantum physics is possibly experiencing the most lively and intriguing debate since the correspondence between Niels Bohr and Albert Einstein about the fundamental nature of the quantum world [4]. What is certain as of now is that the Google machine is solving a computational problem in a fundamentally different way than classical computers.

Eliud Kipchoge was the first man to run 26.2 miles in less than two hours. Maybe Sycamore is the first quantum computer to outperform any supercomputer. In the former case, agreeing on a set of rules for defining the world record helped to judge his performance but did not diminish any enthusiasm or fascination.

Therefore, the recent debate and the ongoing race of technologies has the potential to change the public view on the feasibility of quantum technologies, and inspire a new generation of scientists to come up with improved and truly applicable usage of quantum computing. Maybe, we are only a few creative ideas away from breaking history, like the first man on the moon. We have already taken off.

* In fact, Sycamore was constructed out of 54 qubits but one is broken, that is why we refer to 53.

⁺ Or shouldn’t we better think about them as a fundamentally different concept which  can also work in concert with supercomputers?







Size Matters

I don’t think we have to tell you that the Universe is a very complex and huge place. But in case we actually do, here it is: the universe is bigger and more complex than the human mind can fathom. Think about our galaxy, with its millions of stars, which have their own solar systems with some planets and hundreds of asteroids and general debris. All of them attract each other gravitationally and modify the path that each other has, literally all the time! How can one even start to try to predict how the Universe works with such staggering number of bare elements?

Continue reading “Size Matters”

Quantum Simulation Cookbook

Pictorial Quantum Simulation: Atoms are sitting in a lattice built up by standing light waves, ready to be used for studying the most intriguing questions of state of the art research.


Supercomputers are cornerstones of modern industry. They help to design complicated objects like aircraft, provide the handling of big data sets in AI, trade shares at stock exchanges and set the standards for today’s encryption. However, there exist highly complex problems involving the smallest building blocks of our world which cannot be solved on these supercomputers yet. Continue reading “Quantum Simulation Cookbook”

How quantum physics may save Earth from global warming

Transporting renewable energy to where it’s needed lies at the heart of the human endeavour to get rid of the need for fossil fuels. Superconductors can do so without loosing any of the precious electricity on the way, seemingly defying physical intuition. Find out in this article why many body physics is needed to understand their counter-intuitive behaviour, what role quantum entanglement plays and how quantum computation might lead to the discovery of materials which may give us the tools for a greener future.

Continue reading “How quantum physics may save Earth from global warming”

Extreme Microscoping. Part II.

Things are about to get messy.

Give me a moment of your day, and let me put a picture in your mind. Imagine you and a friend each have a soup in a plate, and each soup has two carrot pieces, one potato and not so much broth in it. You are bored, it is a slow afternoon, so you decide to perform a little experiment.

Continue reading “Extreme Microscoping. Part II.”

Quantum cryptography

How quantum technologies enable uncrackably secure communication.

In our modern computer world, being able to encrypt messages is not only necessary to keep some information secret from others, but is a key part of technologies such as cryptocurrencies like Bitcoin. Furthermore, the scandals around widespread eavesdropping of intelligence agencies has shown the world that in fact none of the routines used today are really secure. But what if I told you that in ten years all communication will be secure because it is physically  impossible to eavesdrop on communication encrypted by quantum cryptography?

Continue reading “Quantum cryptography”

Extreme Microscoping. Part I.

I remember the first time I saw a magnifying glass. I was absolutely fascinated by such an object. It allowed me to see so much more than I could normally (even then, when I could actually see something without glasses or contacts). It was the most amazing thing I had seen until then. Well, what was an amazing discovery for me, had been around for ages in human history. Lenses and objects which resemble magnifying glasses date back four thousand years! But of course, our curiosity is boundless, we humans always need more. I quickly found myself wanting to see even deeper into this weird, amplified creatures. Fortunately, humans didn’t wait a lot to yearn for better resolutions.

Continue reading “Extreme Microscoping. Part I.”

Scotty – Quantum beam me up!

How information can be teleported through the two most counter-intuitive properties of quantum mechanics.

We all know the quantum world is weird, but in no place does it become as weird as in the protocol allowing almost instant transportation of information from one place to the other termed “quantum teleportation”. That may sound like its impossible – but what if I tell you that this can even be done without the recipient of the information knowing? And that this technology is about to make communication absolutely eavesdrop-safe?

Continue reading “Scotty – Quantum beam me up!”

Three colours in a Venetian Mosaic

This post was written during the 27th installment of the Quark Matter conference held in Venice in May, 2018.

Today, in Venice, the sun does not shine, it roars. Yesterday, the city was completely soaked as a storm paraded through it, giving thunderous signals of its arrival. But today golden hues flood the air, contrasting with the shadows of the trees near the Palazzo del Casinó. The wind blows calmly and the smell of sea salt fills the air. Outside, the sea hums, the boats sail, and the tourists roam the streets of the islands in search of a taste of the past. I am sitting outside of the venue of the conference, drinking a coffee, admiring the day, and admiring the excruciatingly white buildings in front of me.

Continue reading “Three colours in a Venetian Mosaic”

How chaos drives the arrow of time

This post is a continuation of our last post on chaos. We therefore recommend you to read that one first, but it’s by no means necessary.

Time only moves forward – this is what we experience in our everyday lives. Often, people connect this to the fact that there are clearly processes in nature which cannot be undone: when you boil an egg you can not make the egg-white transparent again, your coffee is very unlikely to go back into the coffee powder, which will never become a full bean again itself.

Continue reading “How chaos drives the arrow of time”